Preface前 言神经网络是能有效解决复杂计算问题的最有吸引力的机器学习模型之一,用于解决人工智能(Artificial Intelligence,AI)和机器学习不同领域的各种问题。
本书解释了神经网络的优点,提供了高级主题相关的基础知识。本书从使用neuralnet包设计神经网络作为开始。然后介绍神经网络如何从数据中学习,以及背后的原理。本书涵盖了各种类型的神经网络,包括循环神经网络和卷积神经网络。通过本书,读者不仅可以学习如何训练神经网络,还可以探索这些神经网络的泛化。最后深入研究不同的神经网络模型,并与现实世界的用例相结合。
在本书的最后,读者将在实际案例的帮助下,学会在自己的应用程序中实现神经网络模型。
本书内容第1章介绍人工神经网络(Artificial Neural Network,ANN)和人工智能的基本概念与理论,展示ANN和AI的简单应用程序与数学概念。还对R中的ANN函数进行介绍。
第2章介绍如何在图形模型中进行精确推断,并展示作为专家系统的应用程序。推断算法是学习和使用这类模型的基础。读者至少需要了解它们的用处及工作原理。
第3章阐述深度学习和深度学习中神经网络的使用。该章使用R的添加包介绍神经网络实现过程的细节,涵盖许多为深度学习设置的隐藏层,并使用实用的数据集来帮助读者理解实现过程。
第4章介绍感知机以及使用它构建的应用程序,以及基于R的感知机实现。
第5章涵盖使用数据集训练神经网络的另一个案例,还通过使用函数plot()对输入层、隐藏层和输出层进行图形表示,帮助读者更好地理解神经网络。
第6章介绍循环神经网络和卷积神经网络及其在R中的实现。同时提出几个案例帮助读者了解基本概念。
第7章介绍不同领域的神经网络应用,以及神经网络如何在AI领域中使用。有助于读者了解神经网络算法的实际应用。读者可以采用不同的数据集、运行R代码来进一步增强自身的技能。
准备工作本书着重于R环境中的神经网络,使用R 3.4.1和RStudio 1.0.153来建立各种应用程序、开源和企业级专业软件。本书专注于如何以最佳方式利用各种R添加包来构建现实世界的应用程序。本着这种精神,我们尽量保持所有代码的友好性和可读性。这将使读者能够轻松地读懂代码,并在不同的场景中轻松使用。
本书读者对象本书适用于任何具有R和统计背景知识,同时希望使用神经网络从复杂数据中获得更好结果的人。如果你对人工智能和深度学习感兴趣,并希望提升自己,那么这本书就是你所需要的!
下载示例代码读者可以从http://www.packtpub.com或者华章网站http://www.hzbook.com/下载本书的示例代码。
本书解释了神经网络的优点,提供了高级主题相关的基础知识。本书从使用neuralnet包设计神经网络作为开始。然后介绍神经网络如何从数据中学习,以及背后的原理。本书涵盖了各种类型的神经网络,包括循环神经网络和卷积神经网络。通过本书,读者不仅可以学习如何训练神经网络,还可以探索这些神经网络的泛化。最后深入研究不同的神经网络模型,并与现实世界的用例相结合。
在本书的最后,读者将在实际案例的帮助下,学会在自己的应用程序中实现神经网络模型。
本书内容第1章介绍人工神经网络(Artificial Neural Network,ANN)和人工智能的基本概念与理论,展示ANN和AI的简单应用程序与数学概念。还对R中的ANN函数进行介绍。
第2章介绍如何在图形模型中进行精确推断,并展示作为专家系统的应用程序。推断算法是学习和使用这类模型的基础。读者至少需要了解它们的用处及工作原理。
第3章阐述深度学习和深度学习中神经网络的使用。该章使用R的添加包介绍神经网络实现过程的细节,涵盖许多为深度学习设置的隐藏层,并使用实用的数据集来帮助读者理解实现过程。
第4章介绍感知机以及使用它构建的应用程序,以及基于R的感知机实现。
第5章涵盖使用数据集训练神经网络的另一个案例,还通过使用函数plot()对输入层、隐藏层和输出层进行图形表示,帮助读者更好地理解神经网络。
第6章介绍循环神经网络和卷积神经网络及其在R中的实现。同时提出几个案例帮助读者了解基本概念。
第7章介绍不同领域的神经网络应用,以及神经网络如何在AI领域中使用。有助于读者了解神经网络算法的实际应用。读者可以采用不同的数据集、运行R代码来进一步增强自身的技能。
准备工作本书着重于R环境中的神经网络,使用R 3.4.1和RStudio 1.0.153来建立各种应用程序、开源和企业级专业软件。本书专注于如何以最佳方式利用各种R添加包来构建现实世界的应用程序。本着这种精神,我们尽量保持所有代码的友好性和可读性。这将使读者能够轻松地读懂代码,并在不同的场景中轻松使用。
本书读者对象本书适用于任何具有R和统计背景知识,同时希望使用神经网络从复杂数据中获得更好结果的人。如果你对人工智能和深度学习感兴趣,并希望提升自己,那么这本书就是你所需要的!
下载示例代码读者可以从http://www.packtpub.com或者华章网站http://www.hzbook.com/下载本书的示例代码。