前 言
Data Mining and Machine Learning
数据挖掘和机器学习使人们能够从数据中获得基本的洞察和知识,从大规模数据中发现深刻、有趣和新颖的模式,以及描述性、可理解和可预测的模型。
这个领域有很多相关图书,但它们要么太高深,要么太前沿。本书是一本普及性的书,介绍了机器学习和数据挖掘的基本概念与算法基础。本书中第一次提到某个概念时会对其进行详细解释,给出详细的步骤和推导过程。本书旨在通过数据和方法的几何解释、(线性)代数解释与概率解释,探讨公式背后的原理。
本书第2版增加了回归的部分,包括线性回归、逻辑(logistic)回归、神经网络和深度学习。另外有几章的内容有更新,已知的错误也已修复。本书内容主要包括数据分析基础、频繁模式挖掘、聚类、分类和回归。这些内容涵盖核心方法及前沿主题,例如深度学习、核方法、高维数据分析和图分析。
本书列举了许多例子来说明相关概念和算法,章末还配有练习题。本书中的所有算法都已由作者实现。建议读者自己实现这些算法(例如,使用Python或R语言实现)以加深理解。幻灯片、数据集和视频等补充资源可通过本书的配套网站http://dataminingbook.info在线获取。
本书适合用于数据挖掘、机器学习和数据科学领域本科生和研究生阶段的课程。本书每一部分开头都会概括介绍本部分的各章。虽然各章大多是自成体系的(重点强调了重要的方程),但第一部分关于数据分析的基础性介绍也是有用的。例如,第一部分中的“核方法”一章(第5章)应该在后面章节出现的其他基于核的算法之前介绍。读者可以根据课程的重点或自己的兴趣,按不同的顺序阅读不同的部分。最后,欢迎各位读者通过本书配套网站联系我们,提出勘误或其他建议。
j***K 2023-08-10 13:45:10
送货速度快 性价比高 赞