Python数据挖掘入门与实践

  • 书籍语言:简体中文
  • 下载次数:9328
  • 书籍类型:Epub+Txt+pdf+mobi
  • 发布日期:2025-09-07
  • 连载状态:全集
  • 书籍作者:罗伯特·莱顿 (Robert Layton)
  • ISBN:9787115427106
  • 运行环境:pc/安卓/iPhone/iPad/Kindle/平板

内容简介

《Python数据挖掘入门与实践》一书作为数据挖掘入门读物,介绍了数据挖掘的基础知识、基本工具和实践方法,通过循序渐进地讲解算法,带你轻松踏上数据挖掘之旅。本书采用理论与实践相结合的方式,呈现了如何使用决策树和随机森林算法预测美国职业篮球联赛比赛结果,如何使用亲和性分析方法推荐电影,如何使用朴素贝叶斯算法进行社会媒体挖掘,等等。本书也涉及神经网络、深度学习、大数据处理等内容。

作者简介

作者简介:

Robert Layton

计算机科学博士,网络犯罪问题和文本分析方面的专家。多年来一直热衷于Python编程,参与过scikit-learn库等很多开源库的开发,曾担任2014年度“谷歌编程之夏”项目导师。他曾与全球几大数据挖掘公司密切合作,挖掘真实数据并研发相关应用。他的公司dataPipeline为多个行业提供数据挖掘和数据分析解决方案。

译者简介:

杜春晓

英语语言文学学士,软件工程硕士。其他译著有《电子达人——我的第一本Raspberry Pi入门手册》《Python数据分析》。新浪微博:@宜_生。

编辑推荐

在数据规模急速膨胀的大数据时代,数据挖掘这项甄别重要数据的核心技术正发挥越来越重要的作用。它将赋予你解决实际问题的“超能力”:预测体育赛事结果、精确投放广告、根据作品的风格解决作者归属问题,等等。
本书使用简单易学且拥有丰富第三方库和良好社区氛围的Python语言,由浅入深,以真实数据作为研究对象,真刀实枪地向读者介绍Python数据挖掘的实现方法。通过本书,读者将迈入数据挖掘的殿堂,透彻理解数据挖掘基础知识,掌握解决数据挖掘实际问题的优秀实践!
- 理解决策树、朴素贝叶斯、支持向量机和深度学习
- 运用常见算法为解决现实问题建立数据模型
- 利用API从Reddit等网站获取数据集
- 从数据集中找出并提取特征
- 使用数据集设计并开发数据挖掘应用
- 基于实时数据,进行大数据处理

下载地址

目录

第1章  开始数据挖掘之旅  1
1.1  数据挖掘简介  1
1.2  使用Python和IPython Notebook  2
1.2.1  安装Python  2
1.2.2  安装IPython  4
1.2.3  安装scikit-learn库  5
· · · · · · (更多)

猜你喜欢