据统计,在当今各行各业中,互联网与软件工程行业薪资名列前茅,大幅领先于传统行业。BOSS直聘发布《2020年人才资本趋势报告》,该报告公布了2020年人才领域的前瞻趋势,对其中的人工智能相关方向进行了梳理。其中,自然语言处理岗位的平均薪资为25?553元;机器学习岗位的平均薪资为27?652元;语音识别岗位的平均薪资为24?037元;深度学习岗位的平均薪资为27?516元;语音、视频、图形开发岗位的平均薪资为22?979元。随着人工智能领域的不断扩大和普及,各行各业逐步深入实践和应用人工智能领域的相关技术,具有实践经验的顶尖AI人才缺口增大,人工智能技术将成为第四次工业革命的发动机,成为不可或缺的力量源泉。
在人工智能领域,计算机视觉是人工智能最重要的部分之一,尤其是人脸图像处理领域涌现了商汤、旷视、云丛、抖音等多家独角兽企业。2014年,中国人脸识别行业的市场规模为49亿元;2018年,中国人脸识别行业的市场规模为131亿元,年均复合增长率为37%。这充分显示了人脸图像处理技术的巨大商用价值,大量的人脸相关应用不断涌现。
本书结合大量的实际案例,从Python图像处理开始讲起,再到机器学习、深度学习的理论和应用,通过由浅入深、图文并茂的讲解及项目实战,提高读者的理论水平和代码实践能力。
本书特色
1 入门门槛低,学习曲线平滑
本书从搭建环境学起,首先介绍Windows、Linux和Mac OS这三种环境下编译环境的配置和安装;然后介绍与Python数据编程相关的基础知识、图像处理算法基础及常用函数;接着介绍机器学习和深度学习的基础理论;最后通过Python复现各种常用软件中的人脸图像算法应用。本书学习曲线平滑,适合深度学习和机器学习的零基础读者阅读。
2 通过对比、理论结合实践的方式讲解,适合新手学习
对于一个新知识点的出现,本书通过对比的方式给出了概念或原理,让读者能举一反三,拓宽知识面;对深度学习的一些理论和概念,本书结合目前热门软件中的图像算法应用实例,让读者能边学习边实践,缩短了新手与老手之间的差距。
3 内容丰富、实用,主次分明
本书所选案例涉猎广泛而丰富,算法案例紧跟当前潮流,如抖音、天天P图、美颜相机中的各种图像处理技巧,沿着“需求→算法设计→代码实现”的思路讲解,书中大量既丰富又生动有趣的例子简单易学,可直接上手。在代码示例中,不仅包含了模型构建和设计的核心思想,同时也兼顾了新手容易犯错的细节展示。此外,本书还介绍了一些在工程实践中常用的设计与实现技巧,以提高内容的实用性,增强案例与实际系统设计和实现过程的联系。
4 图文搭配合理、生动有趣,全程伴随实战
本书从实战出发,介绍了大约60多个案例,脉络清晰,没有太多枯燥的理论讲解,而是以一位资深AI算法工程师手把手带读者入门做项目的方式,讲述了新手如何入门成为AI图像算法工程师,遇到项目如何入手去做,以及目前抖音中好玩的效果是如何一步步通过算法设计做出来的,沿着Python基础、图像处理技术、视频处理技术、机器学习、深度学习及各类图像美颜算法的思路去实现。目前,各种App中美颜算法大行其道,希望通过作者有趣的讲解,可以带领读者探索其中的各种算法设计小技巧。
本书内容
第1章?AI时代:图像技术背景知识
本章首先介绍了什么是人工智能以及人工智能的历史和发展,通过介绍AI的发展历史和一些标志性事件,概述了目前中国AI技术的发展现状;然后介绍了计算机视觉技术及其分类和应用,让读者在第1章就可以体会到AI在生活中无处不在,以及它无限的发展前景。
第2章?武器和铠甲:开发环境配置
本章主要介绍了本书涉及的开发语言和编译环境,详细介绍了OpenCV开源库及Python不同版本间的区别,带领读者手把手搭建PyCharm和Anaconda编译环境,完成基本的AI开发环境配置,并且在不同环境下装载各种需要的工具包。
第3章?开启星辰大海:图像处理技术基础知识
本章详细介绍了图像处理技术的基础知识,每个知识点对应多个Python实例,让读者能够轻松完成图像的旋转、平移、镜像和缩放等一系列操作。
第4章?First Blood:第一波项目实战
本章以大量的Python实例展示了基于图像处理算法可以实现的多种效果,介绍了抖音哈哈镜、照片怀旧、素描、油画、卡通化和马赛克处理等一系列项目的算法原理和代码实现,有趣地展示了图像处理技术中的各种玩法。
第5章?Double Kill:视频图像处理理论和项目实战
本章介绍了视频图像处理技术的原理和流程,并以大量的实例展示了如何根据抖音的一些视频特效来设计算法以实现其效果,完成了抖音视频中抖动、闪白、霓虹、时光倒流、视频反复、慢动作和Black magic等效果设计。
第6章?Triple Kill:基于机器学习的人脸识别
本章详细介绍了机器学习的基础知识,从一个机器学习的实例出发,讲述了机器学习的原理,以及什么时候使用机器学习。本章以经典的人脸识别算法为例,从数据准备到算法设计原理,再到最后的训练,完成一个完整的机器学习项目。
第7章?Quatary Kill:基于深度学习的人脸识别
本章详细介绍了深度学习的基本概念和使用场景;讲解了深度学习和机器学习的区别,并以LeNet-5
在人工智能领域,计算机视觉是人工智能最重要的部分之一,尤其是人脸图像处理领域涌现了商汤、旷视、云丛、抖音等多家独角兽企业。2014年,中国人脸识别行业的市场规模为49亿元;2018年,中国人脸识别行业的市场规模为131亿元,年均复合增长率为37%。这充分显示了人脸图像处理技术的巨大商用价值,大量的人脸相关应用不断涌现。
本书结合大量的实际案例,从Python图像处理开始讲起,再到机器学习、深度学习的理论和应用,通过由浅入深、图文并茂的讲解及项目实战,提高读者的理论水平和代码实践能力。
本书特色
1 入门门槛低,学习曲线平滑
本书从搭建环境学起,首先介绍Windows、Linux和Mac OS这三种环境下编译环境的配置和安装;然后介绍与Python数据编程相关的基础知识、图像处理算法基础及常用函数;接着介绍机器学习和深度学习的基础理论;最后通过Python复现各种常用软件中的人脸图像算法应用。本书学习曲线平滑,适合深度学习和机器学习的零基础读者阅读。
2 通过对比、理论结合实践的方式讲解,适合新手学习
对于一个新知识点的出现,本书通过对比的方式给出了概念或原理,让读者能举一反三,拓宽知识面;对深度学习的一些理论和概念,本书结合目前热门软件中的图像算法应用实例,让读者能边学习边实践,缩短了新手与老手之间的差距。
3 内容丰富、实用,主次分明
本书所选案例涉猎广泛而丰富,算法案例紧跟当前潮流,如抖音、天天P图、美颜相机中的各种图像处理技巧,沿着“需求→算法设计→代码实现”的思路讲解,书中大量既丰富又生动有趣的例子简单易学,可直接上手。在代码示例中,不仅包含了模型构建和设计的核心思想,同时也兼顾了新手容易犯错的细节展示。此外,本书还介绍了一些在工程实践中常用的设计与实现技巧,以提高内容的实用性,增强案例与实际系统设计和实现过程的联系。
4 图文搭配合理、生动有趣,全程伴随实战
本书从实战出发,介绍了大约60多个案例,脉络清晰,没有太多枯燥的理论讲解,而是以一位资深AI算法工程师手把手带读者入门做项目的方式,讲述了新手如何入门成为AI图像算法工程师,遇到项目如何入手去做,以及目前抖音中好玩的效果是如何一步步通过算法设计做出来的,沿着Python基础、图像处理技术、视频处理技术、机器学习、深度学习及各类图像美颜算法的思路去实现。目前,各种App中美颜算法大行其道,希望通过作者有趣的讲解,可以带领读者探索其中的各种算法设计小技巧。
本书内容
第1章?AI时代:图像技术背景知识
本章首先介绍了什么是人工智能以及人工智能的历史和发展,通过介绍AI的发展历史和一些标志性事件,概述了目前中国AI技术的发展现状;然后介绍了计算机视觉技术及其分类和应用,让读者在第1章就可以体会到AI在生活中无处不在,以及它无限的发展前景。
第2章?武器和铠甲:开发环境配置
本章主要介绍了本书涉及的开发语言和编译环境,详细介绍了OpenCV开源库及Python不同版本间的区别,带领读者手把手搭建PyCharm和Anaconda编译环境,完成基本的AI开发环境配置,并且在不同环境下装载各种需要的工具包。
第3章?开启星辰大海:图像处理技术基础知识
本章详细介绍了图像处理技术的基础知识,每个知识点对应多个Python实例,让读者能够轻松完成图像的旋转、平移、镜像和缩放等一系列操作。
第4章?First Blood:第一波项目实战
本章以大量的Python实例展示了基于图像处理算法可以实现的多种效果,介绍了抖音哈哈镜、照片怀旧、素描、油画、卡通化和马赛克处理等一系列项目的算法原理和代码实现,有趣地展示了图像处理技术中的各种玩法。
第5章?Double Kill:视频图像处理理论和项目实战
本章介绍了视频图像处理技术的原理和流程,并以大量的实例展示了如何根据抖音的一些视频特效来设计算法以实现其效果,完成了抖音视频中抖动、闪白、霓虹、时光倒流、视频反复、慢动作和Black magic等效果设计。
第6章?Triple Kill:基于机器学习的人脸识别
本章详细介绍了机器学习的基础知识,从一个机器学习的实例出发,讲述了机器学习的原理,以及什么时候使用机器学习。本章以经典的人脸识别算法为例,从数据准备到算法设计原理,再到最后的训练,完成一个完整的机器学习项目。
第7章?Quatary Kill:基于深度学习的人脸识别
本章详细介绍了深度学习的基本概念和使用场景;讲解了深度学习和机器学习的区别,并以LeNet-5