信息和通信技术(ICT)已成为开展业务的常用工具。凭借ICT提供的高度适用性和支持,许多困难的计算任务都得到了简化。另一方面,信息和通信技术也成为创造挑战的关键因素!如今,如果不使用智能技术,那么在各领域收集的数据规模将远远超过我们缩减数据和分析数据的能力。积累的(大)数据中隐藏着很多有价值的信息。然而,要获得这些有价值的信息和洞察力是非常困难的。因此,帮助人类从数据中提取知识的新一代计算理论和工具是必不可少的。毕竟,为什么这些本质上聪明、智能的工具和技术不用来最小化人的参与,以及有效地管理海量数据呢?
计算智能技术,包括神经网络、模糊系统、进化计算以及其他的机器学习领域,在用于支持业务决策的数据识别、可视化、分类和分析等方面非常有效。已开发的计算智能理论已经应用于工程、数据分析、预测、医疗保健等许多领域。本书将这些技巧结合在一起来解决数据科学中的问题。
最近出现的“数据科学”一词,特指一个使得海量数据变得有意义的新行业。但是,处理数据并使其有意义这一点具有悠久历史。数据科学是一套用于支持和指导从数据中提取信息和洞察力的基本原则。与数据科学最密切相关的概念很可能是数据挖掘——通过包含这些原则,从数据中提取知识的技术。数据科学的核心输出是数据产品。数据产品可以是从推荐列表到仪表板的任何产品,也可以是支持实现更明智决策的任何产品。分析是数据科学的核心。分析侧重根据统计模型来理解数据。它关注数据的收集、分析和解释,以及数据分析结果的有效组织、展示和交流。
这本教材旨在满足希望从事数据科学和计算智能领域的研究和开发人员的需求。
全书概览
自1994年以来,我们在不同地方以不同形式教授了本书中的主题。特别是,本书基于作者过去几年在不同大学和不同研究机构所教授的研究生课程,其内容涉及各种数据科学的相关知识。来自参与者和同事的反馈在很大程度上帮助我们改进了本书的内容。
本书可以作为研究生或高年级本科生的一些课程的教科书或主要参考书,这些课程包括智能控制、计算科学、应用人工智能以及数据库中的知识发现等。
本书以智能的方式为读者设计和实现用于实际应用的数据分析方案奠定了坚实的基础。本书共分为9章。
下面简要介绍每一章中的内容。
数据对于任何企业而言都是重要资产。数据可以为客户行为、市场资讯以及运营绩效等领域提供有价值的洞察力。数据科学家搭建智能系统来管理、解释、理解数据,并从这些数据中获取关键知识。第1章概述了数据科学的这些方面。特别强调的是,帮助学生确定数据科学思维在数据驱动型企业中的重要性。
数据科学项目不同于典型的商业智能项目。第2章概述了数据生命周期、数据科学项目生命周期以及数据分析生命周期。本章还着重解释了标准的数据分析过程。
对于数据科学家而言,最常见的任务是预测和机器学习。机器学习侧重于数据建模,以及与数据科学相关的方法和学习算法。第3章详细介绍了数据科学家和分析师所使用的方法和算法。
模糊集合可以用作通用的近似器,这对建模未知的对象至关重要。如果操作员能够在特定情景下通过语言描述要采取的行动类型,那么使用数据对他的控制行为进行建模就非常有用。第4章介绍了模糊逻辑的基本概念及其在数据科学中的实际应用。
第5章介绍了人工神经网络——一种模拟人脑的计算智能技术。人工神经网络的一个重要特征是其适应性,其中“通过实例学习”取代了解决问题时的传统“编程”。另一个显著特征是允许快速计算的内在并行性。本章为神经网络和深度学习提供了实用的入门知识。
进化计算是一种创新的优化方法。进化计算的一个领域——遗传算法——涉及全局优化算法的使用。遗传算法基于自然选择和遗传学机制。第6章描述了机器学习环境中的进化计算,特别是生物进化和遗传算法。
当问题计算较困难或者仅仅是计算复杂度太高时,元启发式被认为是用于优化的健壮性方法。虽然元启发式通常不会生成最优解决方案,但它们可以在适当的计算时间内提供合理的解决方案,例如通过使用随机机制。元启发式和数据分析有着共同的基础,因为它们通过增量操作,在难解的搜索空间中寻找近似结果。第7章简要介绍了元启发式方法的基本要素,如自适应记忆方法和群体智能。本章还进一步讨论了分类方法,如案例推理。这种分类方法基于这一思想,即以前已解决问题的积累经验可以很好地代表新的情况。基于案例的推理已用于重要的现实世界应用中。
为了利用好大数据,就需要不断地进行分析,并利用数据中的价值。这需要一个基础架构,可以管理和处理大量的结构化和非结构化数据——数据流和存储中的数据——并且可以保护数据隐私和安全。第8章提供了广泛的、涵盖大数据的技术和工具,这些技术和工具支持高级分析、数据隐私以及伦理和安全问题。
第9章给出了R编程语言的简单介绍。R语言既优雅又灵活,并且具有用于数据处理的大量语法。R还包含强大的图形功能。
最后,附录提供了一系列在实践中处理数据科学的流行工具。在整本书中,真实世界的案例研究和练习都是为了强调该材料所涵盖的某些方面,并激发思想。
计算智能技术,包括神经网络、模糊系统、进化计算以及其他的机器学习领域,在用于支持业务决策的数据识别、可视化、分类和分析等方面非常有效。已开发的计算智能理论已经应用于工程、数据分析、预测、医疗保健等许多领域。本书将这些技巧结合在一起来解决数据科学中的问题。
最近出现的“数据科学”一词,特指一个使得海量数据变得有意义的新行业。但是,处理数据并使其有意义这一点具有悠久历史。数据科学是一套用于支持和指导从数据中提取信息和洞察力的基本原则。与数据科学最密切相关的概念很可能是数据挖掘——通过包含这些原则,从数据中提取知识的技术。数据科学的核心输出是数据产品。数据产品可以是从推荐列表到仪表板的任何产品,也可以是支持实现更明智决策的任何产品。分析是数据科学的核心。分析侧重根据统计模型来理解数据。它关注数据的收集、分析和解释,以及数据分析结果的有效组织、展示和交流。
这本教材旨在满足希望从事数据科学和计算智能领域的研究和开发人员的需求。
全书概览
自1994年以来,我们在不同地方以不同形式教授了本书中的主题。特别是,本书基于作者过去几年在不同大学和不同研究机构所教授的研究生课程,其内容涉及各种数据科学的相关知识。来自参与者和同事的反馈在很大程度上帮助我们改进了本书的内容。
本书可以作为研究生或高年级本科生的一些课程的教科书或主要参考书,这些课程包括智能控制、计算科学、应用人工智能以及数据库中的知识发现等。
本书以智能的方式为读者设计和实现用于实际应用的数据分析方案奠定了坚实的基础。本书共分为9章。
下面简要介绍每一章中的内容。
数据对于任何企业而言都是重要资产。数据可以为客户行为、市场资讯以及运营绩效等领域提供有价值的洞察力。数据科学家搭建智能系统来管理、解释、理解数据,并从这些数据中获取关键知识。第1章概述了数据科学的这些方面。特别强调的是,帮助学生确定数据科学思维在数据驱动型企业中的重要性。
数据科学项目不同于典型的商业智能项目。第2章概述了数据生命周期、数据科学项目生命周期以及数据分析生命周期。本章还着重解释了标准的数据分析过程。
对于数据科学家而言,最常见的任务是预测和机器学习。机器学习侧重于数据建模,以及与数据科学相关的方法和学习算法。第3章详细介绍了数据科学家和分析师所使用的方法和算法。
模糊集合可以用作通用的近似器,这对建模未知的对象至关重要。如果操作员能够在特定情景下通过语言描述要采取的行动类型,那么使用数据对他的控制行为进行建模就非常有用。第4章介绍了模糊逻辑的基本概念及其在数据科学中的实际应用。
第5章介绍了人工神经网络——一种模拟人脑的计算智能技术。人工神经网络的一个重要特征是其适应性,其中“通过实例学习”取代了解决问题时的传统“编程”。另一个显著特征是允许快速计算的内在并行性。本章为神经网络和深度学习提供了实用的入门知识。
进化计算是一种创新的优化方法。进化计算的一个领域——遗传算法——涉及全局优化算法的使用。遗传算法基于自然选择和遗传学机制。第6章描述了机器学习环境中的进化计算,特别是生物进化和遗传算法。
当问题计算较困难或者仅仅是计算复杂度太高时,元启发式被认为是用于优化的健壮性方法。虽然元启发式通常不会生成最优解决方案,但它们可以在适当的计算时间内提供合理的解决方案,例如通过使用随机机制。元启发式和数据分析有着共同的基础,因为它们通过增量操作,在难解的搜索空间中寻找近似结果。第7章简要介绍了元启发式方法的基本要素,如自适应记忆方法和群体智能。本章还进一步讨论了分类方法,如案例推理。这种分类方法基于这一思想,即以前已解决问题的积累经验可以很好地代表新的情况。基于案例的推理已用于重要的现实世界应用中。
为了利用好大数据,就需要不断地进行分析,并利用数据中的价值。这需要一个基础架构,可以管理和处理大量的结构化和非结构化数据——数据流和存储中的数据——并且可以保护数据隐私和安全。第8章提供了广泛的、涵盖大数据的技术和工具,这些技术和工具支持高级分析、数据隐私以及伦理和安全问题。
第9章给出了R编程语言的简单介绍。R语言既优雅又灵活,并且具有用于数据处理的大量语法。R还包含强大的图形功能。
最后,附录提供了一系列在实践中处理数据科学的流行工具。在整本书中,真实世界的案例研究和练习都是为了强调该材料所涵盖的某些方面,并激发思想。
z***e 2018-11-18 10:05:19
书的纸质太差了,印刷像是盗版,一股味道,50多买个盗版书感觉不值得,比较失望?,不过物流到是挺快,今天上午买的,晚上就到了