风电机组是风能到电能转换的载体,受随机风载荷激励、极端温差等恶劣环境影响,其核心部件,如叶片、齿轮箱、发电机等,故障率较高。由于运行于高空,地处风资源丰富的偏远地区或海洋,风电机组的检修维护存在较大难度。风电机组核心部件的故障会导致较长的停机时间,造成较大的发电量损失。
振动监测是发现机械传动部件故障的有效手段,风电机组这类结构复杂、远程集群运行的设备对振动监测的需求更为强烈。结合风电机组结构参数与运行规律,振动监测、诊断与寿命预测技术可以辅助发现风电机组早期故障,探明故障机理,预测核心部件的失效时刻,为风电行业的预知检修维护提供依据,对于避免更为严重的故障、降低风电场经济损失具有重大的现实意义。
然而,由于风电机组自身特点,针对其进行振动监测与精确故障诊断存在挑战,主要表现在:①风电机组传动链由多组齿轮、轴承等部件组成,低速部件的各故障特征频率之间、特征频率与调制成分之间存在极为接近的情况,难以区分故障部件;②齿轮箱中各传动轴旋转频率跨度大,高速级的振动能量容易掩盖低速齿轮或轴承的故障特征,低速部件的诊断存在困难;③风电机组是典型的机电液一体化设备,运行中的电气特性可能干扰机械部件的故障特征提取,增加诊断难度;④风电机组处于变速、变载荷运行工况,准确构建排除载荷干扰的健康指标用于寿命预测是目前的研究热点。应该讲,风电机组振动监测、故障诊断与寿命预测的研究涉及振动机理、信号处理、工程优化、机器学习等学科的交叉融合,既依托于学术前沿,又具有重要的工程价值。
目前,基于振动的状态监测系统(condition monitoring system,CMS)成为主流风电机组的标准配置,为本领域的研究提供丰富的数据来源,同时也反映出设备商与运营企业对风电机组故障诊断与寿命预测技术的重视。研究团队经过十余年的积累,对风电行业拥有了深刻的认识,出版本书旨在探讨风电机组常见故障机理,分析不同部件故障特征提取与故障诊断的适用方法,给出核心部件的剩余使用寿命预测手段,为风电机组的状态检修与预知维护提供参考。
得益于华北电力大学这座培养了众多电力人才的高等学校,作者在风力发电领域的研究与工程实施进展顺利,保证了本书内容的丰富翔实。在风电机组故障诊断方面,博士生李状、张博、硕士生史秉帅、马海飞等做了较多工作;在寿命预测方面,博士生黎曦琳、硕士生马玉峰、张晓龙、黄乙珂等进行了多种方法的尝试,并取得了一些实际的应用效果。感谢龙源电力集团股份有限公司的陈铁、华润电力风能有限公司的张阳阳与邵德伟、北京英华达电力电子工程科技有限公司的吴仕明与唐诗尧、山东中车风电有限公司的刘海晨等为本书的研究所提供的素材及来自现场的众多反馈验证。
本书各章节的安排如下:第1章论述了风能产业的特点,介绍了多种适用于风电机组不同部件的状态监测技术,并综述了传动链的故障诊断方法,最后提出风电机组振动诊断与预测中的技术难点;第2章介绍了风电机组的总体结构、常见的传动链结构,分析了风电机组的运行控制原理,便于读者对风电机组的运行过程具有宏观的认识;第3章是风电机组振动监测的基础,内容包括传动链失效原因,齿轮与轴承在故障状态下的振动机理与故障表征,不同结构风电齿轮箱中部件故障特征频率,分析了风电机组传动链离线/在线振动监测系统及相关参数,并介绍了国内外风电机组的振动评价标准;第4章涵盖风电机组传动链故障特征提取的多种方法,既涉及频谱、包络、倒频谱等经典技术,也包含应对传动链诊断难题的相关算法和提高诊断效率的自适应方法;第5章针对风电机组部件众多、故障多样的问题,提出了无监督学习的故障识别方法,在已知故障类别的基础上识别新类,具有较高的工程价值;第6章以风电机组中的轴承为对象,探讨了轴承的健康指标构建方法和模型与数据结合的寿命预测方法,并通过实际风电机组轴承剩余使用寿命数据予以验证。
本书内容集中了作者在风电机组故障诊断领域多年的研究成果,分析了大量的现场案例,可以为风电场的实际运维决策提供参考,也有助于研究者在本领域内新思路、新方法的启发。由于作者水平有限,书中难免存在不足之处,敬请读者批评指正。
滕伟于北京前言