先进的光刻技术是世界上最精密的光学系统与精心设计、高度优化的光化学材料及工艺的结合,它用于生产支撑现代信息社会的微米和纳米尺度的芯片。这种应用光学、化学和材料科学的独特结合,为科学家和工程师探索科学与技术提供了一个理想的“用武之地”。多年来,光刻技术的发展几乎完全依赖尺寸缩放的驱动,并专注于分辨率的提高,以支持“摩尔定律”的延续,即不断提高集成电路的晶体管密度。尽管这种缩放还没有达到其最终极限,但在半导体芯片上集成更多更小且均匀性好、没有缺陷的图形,无疑使相关技术变得越来越困难且成本越来越昂贵。未来的光刻技术要满足新的应用,势必具有不同的要求,例如器件三维(3D)形状的控制、新型(功能)材料的集成、非平面电路图案的实现、应用导向型目标图案的灵活设计等。过去五十多年来,在半导体光刻技术开发方面所积累的知识和经验,为开发新型微纳米技术的应用提供了重要帮助。
本书的材料部分来自我多年来在德国埃朗根大学(FriedrichAlexanderUniversity ErlangenNuremberg,弗里德里希亚历山大埃朗根纽伦堡大学;简称埃朗根大学)教授光刻(技术、物理效应和建模方法)的课程内容,还有部分来自我为其他公司进行光刻技术专业培训和为学术会议提供专门课程的内容。本书旨在帮助具有物理学、光学、计算工程、数学、化学、材料科学、纳米技术和其他专业领域背景的学生涉足令人着迷的光刻技术领域,以及帮助高级工程师和管理人员拓展知识、拓宽视野。
本书的目的不是要为光刻技术的所有方面提供一个完整的描述,而是侧重于解释光刻成像和成形技术的基本原理。书中通过简单易懂的示例来演示这些基本原理,并讨论某些技术方法和技术选项的利弊,还引用详尽的参考文献以引导读者对感兴趣的特殊内容做进一步阅读。为了限制本书的篇幅和撰写所需的时间,有几个重要的光刻技术内容在本书里未能涵盖或仅有少量涉及。例如,量测和工艺控制对于量产光刻工艺越来越重要;先进的深紫外(DUV)和极紫外(EUV)投影光刻需要高质量的掩模,并能对其进行灵活地制造、检验、调整和修复;现代半导体制造需要电路设计者和光刻工艺专家之间的密切互动,以提供一个对光刻“友好”的设计;另外还有许多非光学平版刻印技术。这些方面的内容在其他几本书或评论文章中有所介绍。
关于半导体光刻的优秀书籍已经有几本,为什么还需要另一本关于这个主题的书?最重要的原因是光刻技术是最具活力的技术领域之一,它的发展是不同背景下新思想和新技术的融合,是多学科高度结合的结果。纳米图案的精密制造和准确表征需要深入理解所涉及的物理和化学效应。本书试图从建模驱动的角度来帮助理解这些效应,但不依赖于复杂的数学表述。本书的内容反映了我在应用光学、衍射光学、严格建模,以及优化光与微纳结构相互作用等方面的特殊兴趣和对相关背景的了解。因此,与其他光刻书籍相比,本书对掩模和晶圆形貌效应及相关的光散射效应有较深入的讨论。最后,本书旨在弥补高度专业性的半导体制造工程师,与致力于开发光刻技术及其应用的科学家、工程师之间的知识差异。
光学(投影)光刻技术是将掩模版图投影成像在感光材料(光刻胶)上,然后通过光刻工艺处理将光学图像转换为三维图案的过程。本书的第1章介绍空间成像和光刻胶工艺,解释了对成像质量、光刻胶轮廓和光刻工艺变化进行定量评估的典型指标,对这些指标的分析有助于理解本书后面所涉及的关于成像和工艺改进的影响。
第2章描述了通过投影物镜的开口(数值孔径)透射并聚焦到光刻胶上衍射光的叠加成像,以及投影系统的分辨率极限由阿贝瑞利(AbbeRayleigh)方程决定。第3章阐述了光刻胶化学和工艺的基本原理。接下来的第4、5章概述了分辨率增强技术,这些技术可以帮助现有波长和数值孔径的光学系统实现更小特征尺寸的成形。常见的光学分辨率增强技术包括离轴照明(OAI)、光学邻近效应校正(OPC)、相移掩模(PSM)和光源掩模协同优化(SMO)等。此外,多重成形技术和定向自组装技术(DSA)则采用特殊的材料和工艺来实现更小的特征尺寸。波长为13.5nm的极紫外(EUV)光刻能将光学投影光刻扩展到软X射线的光谱范围,对于波长如此小的光,没有任何材料可以透射。第6章解释了EUV光刻必须采用反射光学器件和掩模,以及新型的光源和光刻胶材料的原因。第7章概述了其他类型的光学光刻方法,包括三维(3D)光刻技术。
本书的其余章节致力于论述先进光学光刻和EUV光刻中的重要物理和化学效应。第8章讨论了波像差、偏振效应和随机散射光对光刻胶内部光强分布的影响。掩模和晶圆形貌效应是由掩模和晶圆上微小形貌的散射光引起的,这部分内容将在第9章中进行介绍。本书的最后一章专门讨论了随机效应。随机效应不仅直接影响光刻胶轮廓的平整度,即纳米级图形边缘粗糙度(LER),而且也直接影响如图形微桥和接触孔未完全打开等致命缺陷的发生率。
本书章节的顺序遵循我在埃朗根大学的课程顺序,其设计旨在为光学和化学的理论及应用提供一个有趣组合,并对各种技术选项进行了阐述。第1~5章描述了光学和光刻胶化学的一般背景知识,应按顺序阅读,第6~10章的阅读顺序可以根据读者的特殊兴趣进行调整。第7章概述了其他可选(光学)光刻方法,这些方法对纳米电子学以外的各种微纳制造应用更有意义,而仅对(先进)半导体制造的光刻技术感兴趣的人可以跳过此章。
与许多同事、项目合作伙伴的合作研究,以及和他们富有成效的讨论,为本书提供了宝贵的材料来源。我非常感谢专家们对本书个别部分所提的建议,特别致谢: 来自ASML的Antony Yen、来自Synopsys的HansJürgen Stock、来自Mentor Graphics的John Sturtevant、来自哥廷根大学的Marcus Müller、来自Zeiss SMT的Michael Mundt、来自Enx Labs的Uzodinma Okoroanyanwu和来自CEALeti的Raluca Tiron。
非常感谢弗劳恩霍夫协会集成系统和元器件技术研究所计算光刻和光学组(Fraunhofer IISB)的所有前任和现任成员和学生,特别是Peter Evanschitzky、 Zelalem Belete、 Hazem Mesilhy、 Sean DSilva、 Abdalaziz Awad、Tim Fühner、 Alexandre Vial、Balint Meliorisz、Bernd Tollkühn、 Christian Motzek、 Daniela Matiut、 David Reibold、 Dongbo Xu、 Feng Shao、 Guiseppe Citarella、 Przemislaw Michalak、 Shijie Liu、 Temitope Onanuga、 Thomas Graf、 Thomas Schnattinger、 Viviana Agudelo Moreno和Zhabis Rahimi。所有这些人都为我们研究所开发的光刻仿真软件Dr. LiTHO做出了贡献,本书中的大部分图由该仿真软件生成。来自弗劳恩霍夫光刻组的成员和我在埃朗根大学光刻讲座的学生,对本书的改进提供了许多有益的意见和帮助。特别感谢SPIE Press的Dara Burrows和Tim Lamkins,他们提供了许多有用的技巧和编辑帮助。
安迪·爱德曼
德国,埃朗根
铁***B 2022-11-11 13:49:03
这本书看好久了,价钱一直太贵,觉得不合适,就等双十一再买,就是因为疫情物流慢了点,其他都没的说,物流小哥很给力,包装也很严实,推荐购买