为什么要写这本书
随着深度学习技术的发展、计算能力的提升和视觉数据的增长,视觉智能计算技术在许多应用领域如拍照搜索、智能相册、人脸闸机、城市智能交通管理、智慧医疗等都取得了令人瞩目的成绩。因此越来越多的人开始对机器视觉感兴趣,并开始从事这个行业。就图像识别领域来说,运行一个开源的代码并不是什么难事,但搞懂其中的原理确实会稍有些难度。因此本书在每章中都会用相对通俗的语言来介绍算法的背景和原理,并会在读者“似懂非懂”时给出实战案例。实战案例的代码已全部在线下运行通过,代码并不复杂,可以很好地帮助读者理解其中的细节,希望读者在学习理论之后可以亲自动手实践。图像识别的理论和实践是相辅相成的,希望本书可以带领读者走进图像识别的世界。
本书从章节规划到具体的讲述方式,具有以下两个特点:
第一个特点是本书的主要目标读者定位为高校相关专业的本科生(统计学、计算机技术)、图像识别爱好者,以及不具备专业数学知识的人群。图像识别是一系列学科的集合体,它以机器学习、模式识别等知识为基础,因此依赖很多数学知识。本书尽量绕开复杂的数学证明和推导,从问题的前因后果、创造者思考的过程和简单的数学计算的角度来做模型的分析和讲解,目的是以更通俗易懂的方式带领读者入门。另外,在第8~12章的后面都附有参考文献,想要深入了解的读者可以继续阅读。
第二个特点是本书在每章后面都附有实战案例,读者可以结合案例学习,通过实践验证自己想法的价值。在本书的内容编排上,遵循知识点背景介绍—原理剖析—实战案例的介绍方式,同时所有的代码会在书中详细列出或者上传到GitHub,以方便读者下载与调试,帮助读者快速掌握知识点,快速上手,而且这些代码也可以应用到后续实际的开发项目中。在实际项目章节中,选取目前在图像识别领域中比较热门的项目,对之前的知识点进行汇总,帮助读者巩固与提升。
读者对象
统计学或相关IT专业学生
本书的初衷是面向相关专业的学生—拥有大量基于理论知识的认知却缺乏实战经验的人员,让其在理论的基础上深入了解。通过本书,学生可以跟随本书的教程一起操作学习,达到对自己使用的人工智能工具、算法和技术知其然亦知其所以然的目的。
信息科学和计算机科学爱好者
本书是一本近现代科技的历史书,也是一本科普书,还是一本人工智能思想和技术的教科书。通过本书可以了解人工智能领域的前辈们在探索的道路上做出的努力和思考,理解他们不同的观点和思路,有助于开拓自己的思维和视野。
人工智能相关专业的研究人员
本书详细介绍了图像识别的相关知识。通过本书可以了解其理论知识,了解哪些才是项目所需的内容以及如何在项目中实现,能够快速上手。
如何阅读本书
本书从以下几个方面阐述图像识别:
第1章介绍图像识别的一些应用场景,让读者对图像识别有个初步的认识。
第2章主要对图像识别的工程背景做简单介绍,同时介绍了本书后续章节实战案例中会用到的环境,因此该章是实战的基础。
第3~6章是图像识别的技术基础,包括机器学习、神经网络等。该部分的代码主要使用Python实现。没有机器学习基础的同学需要理解这几章之后再往下看,有机器学习基础的同学可以有选择地学习。
第7章是一个过渡章节,虽然第6章中手动用Python实现了神经网络,但由于本书后面的图像识别部分主要使用PyTorch实现,因此使用该章作为过渡,介绍如何使用PyTorch来搭建神经网络。
第8~12章为图像识别的核心。第8章首先介绍了图像中的卷积神经网络与普通神经网络的异同,并给出了常见的卷积神经网络结构。接下来的第9~12章分别介绍了图像识别中的检测、分割、产生式模型以及可视化的问题,并在每章后面给出相应的实战案例。
第13章简单介绍了图像识别的工业部署模式,以帮助读者构建一个更完整的知识体系。
第8~12章包含参考文献,主要是本书中介绍的一些方法,或者本书中提到但是没有深入说明的方法,感兴趣的读者可以自行查询学习。
关于附件的使用方法:除了第1章外,本书的每一章都有对应的源数据和完整代码,这些内容可在本书中直接找到,有些代码需要从GitHub中下载,地址为https://github.com/image_recognition/learning-recognition。需要注意的是,为了让读者更好地了解每行代码的含义,在注释信息中使用了中文标注,每个程序文件的编码格式都是UTF-8。
勘误和支持
由于本书的作者水平及撰稿时间有限,书中难免会出现一些错误或者不准确的地方,恳请读者批评指正。读者可通过发送电子邮件到weixihan1@163.com和kenny_tm@hotmail.com联系并反馈建议或意见。
致谢
首先非常感谢我的家人,由于业余时间常常被工作挤占,本书的撰写又用了所剩不多的业余时间,因此少了很多陪伴家人的时间,感谢他们的理解、支持和鼓励。
撰写一本书,将自己的知识重新梳理后分享给读者,在技术发展的道路上帮助到其他人,这件事情是非常有价值的,因此也非常感谢两位合著者涂铭、张修鹏。
感谢机械工业出版社华章公司的杨福川老师,以及全程参与审核、校验等工作的张锡鹏、孙海亮老师等出版工作者,是他们的辛勤付出才能保