953
7231
我有以下數據框df:
時間col_A
0 1520582580.000 79.000
1 1520582880.000 22.500
2 1520583180.000 29.361
3 1520583480.000 116.095
4 1520583780.000 19.972
5 1520584080.000 36.857
6 1520584380.000 15.167
7 1520584680.000楠
8 1520584980.000南
9 1520585280.000楠
10 1520585580.000 34.500
11 1520585880.000 17.583
12 1520586180.000楠
13 1520586480.000 48.833
14 1520586780.000 18.806
15 1520587080.000 18.583
col_A缺少一些數據。我想創建一個col_B,它為每個丟失的記錄取先前的值。 IE。
6 1520584380.000 15.167
7 1520584680.000 15.167
8 1520584980.000 15.167
9 1520585280.000 15.167
10 1520585580.000 34.500
11 1520585880.000 17.583
12 1520586180.000 17.583
13 1520586480.000 48.833
和col_C,它們使用非缺失點之前和之後的最接近點進行插值。 IE。
6 1520584380.000 15.167
7 1520584680.000 20.001
8 1520584980.000 24.834
9 1520585280.000 29.667
10 1520585580.000 34.500
11 1520585880.000 17.583
12 1520586180.000 33.208
13 1520586480.000 48.833
除了循環遍歷數據幀以逐條記錄進行計算外,還有沒有內置函數可以用來優雅地實現這一目的?謝謝! 
我認為需要用插值填充:
df ['colB'] = df ['col_A']。ffill()
df ['colc'] = df ['col_A']。interpolate()
打印(df)
時間col_A colB colc
0 1.520583e + 09 79.000 79.000 79.00000
1 1.520583e + 09 22.500 22.500 22.50000
2 1.520583e + 09 29.361 29.361 29.36100
3 1.520583e + 09 116.095 116.095 116.09500
4 1.520584e + 09 19.972 19.972 19.97200
5 1.520584e + 09 36.857 36.857 36.85700
6 1.520584e + 09 15.167 15.167 15.16700
7 1.520585e + 09 NaN 15.167 20.00025
8 1.520585e + 09 NaN 15.167 24.83350
9 1.520585e + 09 NaN 15.167 29.66675
10 1.520586e + 09 34.500 34.500 34.50000
11 1.520586e + 09 17.583 17.583 17.58300
12 1.520586e + 09 NaN 17.583 33.20800
13 1.520586e + 09 48.833 48.833 48.83300
14 1.520587e + 09 18.806 18.806 18.80600
15 1.520587e + 09 18.583 18.583 18.58300
如果要使用方法時間進行插值:
df ['time'] = pd.to_datetime(df ['time'],unit ='s')
df = df.set_index('time')
df ['colB'] = df ['col_A']。ffill()
df ['colc'] = df ['col_A']。interpolate('time')
打印(df)
col_A colB colc
時間
2018-03-09 08:03:00 79.000 79.000 79.00000
2018-03-09 08:08:00 22.500 22.500 22.50000
2018-03-09 08:13:00 29.361 29.361 29.36100
2018-03-09 08:18:00 116.095 116.095 116.09500
2018-03-09 08:23:00 19.972 19.972 19.97200
2018-03-09 08:28:00 36.857 36.857 36.85700
2018-03-09 08:33:00 15.167 15.167 15.16700
2018-03-09 08:38:00 NaN 15.167 20.00025
2018-03-09 08:43:00 NaN 15.167 24.83350
2018-03-09 08:48:00 NaN 15.167 29.66675
2018-03-09 08:53:00 34.500 34.500 34.50000
2018-03-09 08:58:00 17.583 17.583 17.58300
2018-03-09 09:03:00 NaN 17.583 33.20800
2018-03-09 09:08:00 48.833 48.833 48.83300
2018-03-09 09:13:00 18.806 18.806 18.80600
2018-03-09 09:18:00 18.583 18.583 18.58300
|
你的答案
StackExchange.ifUsing(“ editor”,function(){
StackExchange.using(“ externalEditor”,function(){
StackExchange.using(“ snippets”,function(){
StackExchange.snippets.init();
});
});
},“代碼段”);
StackExchange.ready(function(){
var channelOptions = {
標籤:“” .split(“”),
id:“ 1”
};
initTagRenderer(“”。split(“”),“” .split(“”),channelOptions);
StackExchange.using(“ externalEditor”,function(){
//如果啟用了摘要,則必須在摘要後觸發編輯器
如果(StackExchange.settings.snippets.snippetsEnabled){
StackExchange.using(“ snippets”,function(){
createEditor();
});
}
別的 {
createEditor();
}
});
函數createEditor(){
StackExchange.prepareEditor({
useStacksEditor:否,
heartbeatType:“答案”,
autoActivateHeartbeat:否,
convertImagesToLinks:是,
noModals:是的,
showLowRepImageUploadWarning:是的,
聲望:ToPostImages:10,
bindNavPrevention:是的,
後綴:“”,
imageUploader:{
brandingHtml:“採用\ u003ca href = \“ https://imgur.com/ \” \ u003e \ u003csvg class = \“ svg-icon \” width = \“ 50 \” height = \“ 18 \” viewBox = \“ 0 0 50 18 \” fill = \“ none \” xmlns = \“ http://www.w3.org/2000/svg \” \ u003e \ u003cpath d = \“ M46.1709 9.17788C46.1709 8.26454 46.2665 7.94324 47.1084 7.58816C47.4091 7.46349 47.7169 7.36433 48.0099 7.26993C48.9099 6.97997 49.672 6.73443 49.672 5.93063C49.672 5.22043 48.9832 4.61182 48.1414 4.61182C47.4335 4.61182 46.7256 4.91628 46.0943 5.50789C45.74.5 4.313.6662 4.313.6662 43.1481 6.59048V11.9512C43.1481 13.2535 43.6264 13.8962 44.6595 13.8962C45.6924 13.8962 46.1709 13.2535 46.1709 11.9512V9.17788Z \“ / \ u003e \ u003cpath d = \” M32.492 10.1419C32.492 12.6954 34.1182 14.048437.04.0 14.0484 41.5985 12.6954 41.5985 10.1419V6.59049C41.5985 5.28821 41.1394 4.66232 40.1061 4.66232C39.0732 4.66232 38.5948 5.28821 38.5948 6.59049V9.60062C38.5948 10.8521 38.2696 11.5455 37.0451 11.5455C35.8209 11.5455 35.4954 10.8 521 35.4954 9.60062V6.59049C35.4954 5.28821 35.0173 4.66232 34.0034 4.66232C32.9703 4.66232 32.492 5.28821 32.492 6.59049V10.1419Z \“ / \ u003e \ u003cpath fill-rule = \” evenodd \“ clip-rule = \” evenodd \“ d = \“ M25.6622 17.6335C27.8049 17.6335 29.3739 16.9402 30.2537 15.6379C30.8468 14.7755 30.9615 13.5579 30.9615 11.9512V6.59049C30.9615 5.28821 30.4833 4.66231 29.4502 4.66231C28.9913 4.66231 28.4555 4.94978 28.1109 5.50789C6.723 4.5608.787 .1369 4.56087 21.0134 6.57349 21.0134 9.27932C21.0134 11.9852 23.003 13.913 25.3754 13.913C26.5612 13.913 27.4607 13.4902 28.1109 12.6616C28.1109 12.7229 28.1161 12.7799 28.121 12.8346C28.1256 12.8854 28.1301 12.9342 28.1301 12.983C27.24.8349 15.2321 24.1352 14.9821 23.5661 14.7787C23.176 14.6393 22.8472 14.5218 22.5437 14.5218C21.7977 14.5218 21.2429 15.0123 21.2429 15.6887C21.2429 16.7375 22.9072 17.6335 25.6622 17.6335ZM24.1317 9.27932C24.1317 7.94324 24.9928 7.09766 26.1024 27.2119 7.09766 28.0918 7.94324 28.0918 9.27932C28.091810. 5.82936 18.4879 4.62866 16.4027 4.62866C15.1594 4.62866 14.279 4.98375 13.3609 5.88013C12.653 5.05154 11.6581 4.62866 10.3573 4.62866C9.13.2535 5.47873 13.8962 6.51203 13.8962C7.54479 13.8962 8.0232 13.2535 8.0232 11.9512V8.90741C79.911 5104 6.91179 10.893 7.58817 10.893 8.94108V11.9512C10.893 13.95 .90741C13.9157 7.58817 14.3365 6.91179 15.4269 6.91179C16.4027 6.91179 16.8045 7.58817 16.8045 8.94108V11.9512Z \“ / \ u003e \ u003cpath d = \” M3.31675 6.59049C 5.28821 2.83866 4 .66232 1.82471 4.66232C0.791758 4.66232 0.313354 5.28821 0.313354 6.59049V11.9512C0.313354 13.2535 0.791758 13.8962 1.82471 13.8962C2.85798 13.8962 3.31675 13.2535 3.31675 11.9512V6.59049Z \ // u003p.843612 0.400291 0 1.1159 1. 1.98861767 3.57676C2.90056 3.57676 3.7234 2.87869 3.7234 1.98861C3.7234 1.1159 2.90056 0.400291 1.87209 0.400291Z fill = / s#1BB00 \ u003e // // a \ u003e“,
contentPolicyHtml:“根據\ u003ca href =獲得許可的用戶貢獻” https://stackoverflow.com/help/licensing“ \ u003ecc by-sa \ u003c / a \ u003e \ u003ca href =” / Legal / content-policy \“ \ u003e (內容政策)\ u003c / a \ u003e”,
allowUrls:是
},
onDemand:是的,
dispatchSelector:“。discard-answer”
,立即ShowMarkdownHelp:true,enableTables:true,enableSnippets:true
});
}
});
感謝您為Stack Overflow提供答案!
請務必回答問題。提供詳細信息並分享您的研究!
但是要避免...
尋求幫助,澄清或回答其他答案。
根據意見發表聲明;用參考或個人經驗來備份它們。
要了解更多信息,請參閱我們撰寫出色答案的提示。
草稿已保存
草稿丟棄
註冊或登錄
StackExchange.ready(function(){
StackExchange.helpers.onClickDraftSave('#login-link');
});
使用Google註冊
使用Facebook註冊
使用電子郵件和密碼註冊
提交
以訪客身份發布
姓名
電子郵件
必需,但從未顯示
StackExchange.ready(
功能 () {
StackExchange.openid.initPostLogin('.New-post-login','https%3a%2f%2fstackoverflow.com%2fquestions%2f49332802%2fpandas-fill-nan-using-previous-value-andpolpoling%23new-answer' ,“ question_page”);
}
);
以訪客身份發布
姓名
電子郵件
必需,但從未顯示
發表您的答案
丟棄
點擊“發布答案”,即表示您同意我們的服務條款,隱私政策和Cookie政策
不是您要找的答案?瀏覽標記為python-3.x pandas數據框的其他問題,或提出您自己的問題。