这是一本面向中文读者的机器学习教科书, 为了使尽可能多的读者通过本书对机器学习有所了解, 作者试图尽可能少地使用数学知识.
然而, 少量的概率、统计、代数、优化、逻辑知识似乎不可避免. 因此, 本书更适合大学三年级以上的理工科本科生和研究生,
以及具有类似背景的对机器学习感兴趣的人士. 为方便读者, 本书附录给出了一些相关数学基础知识简介.
同类好书推荐:
机器智能 (人工智能领域的创新之作,三大主流方法的和谐统一!当今各种人工智能学说的集成创新。)
美国伯克利大学与Google人工智能科学家合作编写,全世界100多个国家1200多所大学使用。A Must Read for AI
图像处理、分析与机器视觉(第3版)(翻译版)(世界著名计算机教材精选)
全书共16章, 大体上可分为3个部分:第1部分包括第1~3章, 介绍机器学习基础知识; 第2部分包括第4~10章, 介绍一些经典而常用的机器学习方法; 第3部分包括第11~16章, 介绍一些进阶知识. 前3章之外的后续各章均相对独立, 读者可根据自己的兴趣和时间情况选择使用. 根据课时情况, 一个学期的本科生课程可考虑讲授前9章或前10章; 研究生课程则不妨使用全书.
周志华,南京大学计算机系教授,ACM杰出科学家,IEEE Fellow, IAPR Fellow, IET/IEE Fellow, 中国计算机学会会士。国家杰出青年科学基金获得者、长江学者特聘教授。先后担任多种SCI(E)期刊执行主编、副主编、副编辑、编委等。中国计算机学会人工智能与模式识别专业委员会主任,中国人工智能学会机器学习专业委员会主任,IEEE计算智能学会数据挖掘技术委员会副主席。